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Abstract

We investigate the problem of best restricted range approximation of complex-valued

continuous functions for a very general system of restrictions. Our results, including the

characterizations, uniqueness and strong uniqueness, extend all recent results due to Smirnovs.

r 2002 Elsevier Science (USA). All rights reserved.

1. Introduction

Let CðQÞ denote the Banach space of all complex-valued continuous functions on
a compact Hausdorff space Q endowed with the uniform norm

jj f jj ¼ max
tAQ

j f ðtÞj 8fACðQÞ:

In the spirit of the best restricted range approximation in a real-valued continuous
function space, see for example [2,5,14,15] and the relevant references therein,
Smirnov and Smirnov [9,10] presented and formulated the problem of best restricted
range approximations in a complex-valued continuous function space. The setting is
as follows. Let P be a finite-dimensional subspace of CðQÞ and O ¼ fOt: tAQg be a
system of nonempty convex closed sets in the complex plane C: Set

PO ¼ fpAP : pðtÞAOt for all tAQg:

The problem considered here is to find an element pnAPO; which is called a best
(restricted range) approximation to fACðQÞ from PO; such that

jj f � pnjj ¼ inf
pAPO

jj f � pjj:
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As pointed out in [10], this problem for a general class of restrictions is quite difficult.
Therefore, in [9,10], O was assumed to be the system of the closed disks with the
center uðtÞ and radius rðtÞ40 for each tAQ; that is,

Ot ¼ fzAC : jz � uðtÞjprðtÞg 8tAQ;

where u; rACðQÞ: Under this assumption, the authors gave the results on existence,
characterization, uniqueness and strong uniqueness of the best restricted range
approximation. Recently, these results have been extended by Smirnovs [11–13] to a
general restriction system O for which every Ot is a closed, strictly convex set with
nonempty interior and ‘‘smooth’’ boundary, and, in addition, Ot is continuous
relative to tAQ under the Hausdorff metric of sets.

In the present paper, we consider the same problem for a more general class of
restrictions. More precisely, for any tAQ; Ot is only assumed to have nonempty
interior. Of course, it is natural to require that Ot have some continuity relative to
tAQ: Note that any closed convex subset can be expressed as a level set of a convex
function. In fact, for any tAQ; there exists a real convex function Fð	; tÞ on C such
that

@Ot ¼ fzAC : Fðz; tÞ ¼ 0g 8tAQ; ð1:1Þ

intOt ¼ fzAC : Fðz; tÞo0g 8tAQ; ð1:2Þ

where @Ot and intOt denote the boundary and interior of Ot; respectively. Thus, we
assume that the required continuity for O to satisfy is that the function Fð	 ; 	Þ
continues on the product space C
 Q: In this case, we establish some results on
characterization, uniqueness and strong uniqueness, similar to but more general than
the ones due to Smirnovs [9–13].

It should be remarked that our system of restrictions in the present
paper, compared with Smirnovs’ systems in [11–13], is much more general since,
for each tAQ; the closed convex set Ot only needs to have nonempty interior, which,
in fact, can be unbounded. In addition, for a system O satisfying Hypothesis 2.1, if
the set-valued mapping t/Ot is continuous under the Hausdorff metric, we can
verify that there exist continuous functions Fð	 ; 	Þ on C
 Q; which is convex with
respect to the first variable, such that (1.1) and (1.2) hold. But the converse is
obviously not true.

2. Preliminaries

In the paper, we assume that Q contains at least n þ 1 points and that
ff1;f2;y;fngCP is a base of P; that is, any element pAP has a unique expression
of the form

p ¼
Xn

i¼1

cifi;

where ciAC; i ¼ 1; 2;y; n:
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As in [10–12], we need a basic hypothesis and some notations.

Hypothesis 2.1. Assume that there exists p0AP such that

p0ðtÞAintOt 8tAQ: ð2:1Þ

For fACðQÞ; ADQ; following [10], we define

PA;O ¼ fpAP: pðtÞAOt; 8tAAg;

EAð f ;PB;OÞ ¼ inffjj f � pjjA: pAPB;Og;

where jj f jjA ¼ supfj f ðtÞj : tAAg: In particular, we set, for short, EAð f ;PB;OÞ ¼
EAð f Þ when A ¼ B and EAð f ;PB;OÞ ¼ Eð f Þ when A ¼ B ¼ Q:

In general, we have EAð f ÞpEBð f ÞpEð f Þ if ADBDQ:

Definition 2.1 (Smirnov and Smirnov [10]). An element pnAPA;O is called a best

(restricted range) approximation to f on A from PA;O if

jj f � pnjjA ¼ EAð f Þ:

In particular, a best (restricted range) approximation to f on Q from PO is called a
best (restricted range) approximation to f from PO; for short.

Definition 2.2. A subset ADQ is called an admissible subset for f with respect to PO;
if EAð f Þ ¼ Eð f Þ:

Remark 2.1. If A is an admissible subset for f with respect to PO; then any subset of
Q containing A is also an admissible subset for f with respect to PO:

Remark 2.2. Recall that ðA;BÞ with ADQ; BDQ is called an admissible pair
for f with respect to PO if EAð f ;PB;OÞ ¼ Eð f Þ; see, e.g., [10]. Clearly, if A

is an admissible subset for f with respect to PO; then the pair ðA;AÞ is an
admissible pair for f with respect to PO: Conversely, if the pair ðA;BÞ is an
admissible pair for f with respect to PO; then the set A,B is an admissible subset for
f with respect to PO:

Remark 2.3. With almost the same arguments as the proof of Theorem 3.2 in [10],
we can show that, for any fACðQÞ; there exists at least one admissible subset A for f

with respect to PO such that the cardinality jAjp2n þ 1:

Finally, we need the concepts of the subdifferential and directional derivative of a
real function.
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Definition 2.3 (Rockafellar [6]). Let F be a convex function defined on C and
z; uAC: The subdifferential of F at z; denoted by @FðzÞ; is defined by

@FðzÞ ¼ fuAC : FðvÞXFðzÞ þReðv � zÞ %u 8vACg;

while the directional derivative of F at z with respect to u; denoted by F 0ðzÞðuÞ; is
defined by

F 0ðzÞðuÞ ¼ lim
t-þ0

Fðz þ tuÞ � FðzÞ
t

:

As is well-known [6], if F is convex then @FðzÞ is a nonempty closed convex set in
C and

F 0ðzÞðuÞ ¼ max Re @FðzÞu:

The following proposition, which is a direct consequence of the definitions, is
useful in the rest.

Proposition 2.1. Let znAC satisfy that FðznÞ ¼ 0 and zAC: If FðzÞp0ðo0Þ; then

F 0ðznÞðz � znÞ ¼ max Re @FðznÞðz � znÞp0ðo0Þ: ð2:2Þ

3. Characterization of the best approximation

Let fACðQÞ; pnAPO: Following [9,10], we define

Mð f Þ ¼ ftAQ : j f ðtÞj ¼ jj f jjg; BðpnÞ ¼ ftAQ : pnðtÞA@Otg

and

s1ðtÞ ¼ f ðtÞ � pnðtÞ 8tAQ;

From the continuity, it follows that Mð f Þ and BðpnÞ are compact. Furthermore, we
define a set-valued mapping s2ðtÞ by

s2ðtÞ ¼ �@FðpnðtÞ; tÞ 8tAQ;

where @FðpnðtÞ; tÞ denotes the subdifferential of the function Fð	 ; tÞ at pnðtÞ:
The following proposition is the well-known Kolmogorov-type characterization of

the best approximation from a convex subset of CðQÞ; see, for example [1].

Proposition 3.1. Let A be a nonempty closed subset of Q and G a closed non-empty

convex subset of CðAÞ: Let fACðAÞ; pnAG: Then pn is a best approximation to f from

G if and only if

max
tAMAð f�pnÞ

Reðpn � pÞðtÞs1ðtÞX0 8pAG; ð3:1Þ

where

MAð f � pnÞ ¼ ftAA : j f ðtÞ � pnðtÞj ¼ jj f � pnjjAg:
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Let

U ¼ fbðtÞ ¼ ðf1ðtÞ;y;fnðtÞÞs1ðtÞ: tAMð f � pnÞg,
[

tABðpnÞ
cðtÞ

0
@

1
A; ð3:2Þ

where

cðtÞ ¼ ðf1ðtÞ;y;fnðtÞÞs2ðtÞ 8tABðpnÞ:

Then the main theorem of this section can be stated as follows.

Theorem 3.1. Let fACðQÞ; pnAPO: Then the following four statements are

equivalent:

(i) pn is a best restricted range approximation to f from PO;
(ii) for 8pAP;

max max
tAMð f�pnÞ

Re pðtÞs1ðtÞ; max
tABðpnÞ

max Re pðtÞs2ðtÞ
� �

X0

8pAP; ð3:3Þ

where pðtÞs2ðtÞ means fpðtÞ %s : sAs2ðtÞg;
(iii) the origin of the space Cn belongs to the convex hull of the set U;
(iv) there exist sets A0 ¼ ft1;y; tkgDMð f � pnÞ; B0 ¼ ft01;y; t0mgDBðpnÞ;

siAs2ðt0iÞ; i ¼ 1;y;m ðm þ 1pk þ mp2n þ 1Þ and positive constants

l1;y; lk; l01;y; l0m such that the following condition holds:

Xk

l¼1

llpðtlÞs1ðtlÞ þ
Xm

i¼1

l0ipðt0iÞsi ¼ 0 8pAP: ð3:4Þ

Proof. ðiÞ ) ðiiÞ: It is sufficient to prove (ii) for fACðQÞWPO: Suppose that pn is a
best approximation to f from PO but condition (3.3) does not hold for some qAP:
Let ADQ be an admissible set for f with respect to PO with jAjp2n þ 1: Then pn is a

best restricted range approximation to f on A from PO and jj f � pnjjA ¼ jj f � pnjj:
In addition, MAð f � pnÞ ¼ A-Mð f � pnÞ: Set

BAðpnÞ ¼ ftAA: pnðtÞA@Otg ¼ A-BðpnÞ:

Thus

Re qðtÞs1ðtÞo0 8tAMAð f � pnÞ; ð3:5Þ

max Re qðtÞs2ðtÞo0 8tABAðpnÞ: ð3:6Þ
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Write ql ¼ pn � lq: It follows from (2.2) and (3.6) that

lim
l-0þ

FðqlðtÞ; tÞ � FðpnðtÞ; tÞ
l

o0

for all tABAðpnÞ so that, for each tABAðpnÞ; there is lt40 such that qlðtÞAintOt for

all 0olplt: Taking into account that pnðtÞAintOt for all tAAWBAðpnÞ; we also

have that, for each tAAWBAðpnÞ; there is lt40 such that qlðtÞAintOt for all
0olplt: Set l0 ¼ mintAA lt: Then l040 and qlAPA;O for all 0olpl0: Let

G ¼ fql: 0plpl0g: By Proposition 3.1, it follows from (3.5) that pn is not

a best approximation to f from G: This implies that there is 0o%lpl0 such that

jj f � q%ljjAojj f � pnjjA ¼ Eð f Þ so that

EAð f Þpjj f � q%ljjAojj f � pnjjA ¼ Eð f Þ:

This contradicts that A is an admissible set for f with respect to PO: Hence (ii) holds.
ðiiÞ ) ðiiiÞ: Suppose that (ii) holds. By the Linear Inequalities Theorem in [3], it

suffices to show that U is compact in Cn: For the end, let fukg be any sequence in U:

With no loss of generality, assume that uk ¼ ðf1ðtkÞ;y;fnðtkÞÞsk with

tkABðpnÞ; skAs2ðtkÞ and tk-t0ABðpnÞ: Note that

max Re @Fðz; tÞupFðz þ u; tÞ � Fðz; tÞ:

It follows that @FðpnðtÞ; tÞ is uniformly bounded on Q so that fskg is bounded. Thus,
we may assume that sk-s0: From the definition of the subdifferential it follows that

Fðz; tkÞXFðpnðtkÞ; tkÞ �Re ðz � pnðtkÞÞsk 8zAC:

Taking the limit as k-N; we have

Fðz; t0ÞXFðpnðt0Þ; t0Þ �Reðz � pnðt0ÞÞs0 8zAC:

This implies that s0As2ðt0Þ so that fukg contains a subsequence which converge to
an element in U: This completes the proof of the compactness of the set U and so (iii)
holds.

ðiiiÞ ) ðivÞ: Suppose that the origin of the space Cn belongs to the convex hull of
the set U: Then in view of Caratheodory’s theorem in [3] one can find

A0 ¼ ft1;y; tkgDMð f � pnÞ; B0 ¼ ft01;y; t0mgDBðpnÞ; csðt0iÞAcðt0iÞ; s ¼ 1;y;mi;

i ¼ 1;y;m and positive constants l1;y; lk; l0is; s ¼ 1;y;mi; i ¼ 1;y;m such

that

Xk

l¼1

ll þ
Xm

i¼1

Xmi

s¼1

l0is ¼ 1;

Xk

l¼1

llbðtlÞ þ
Xm

i¼1

Xmi

s¼1

l0iscsðt0iÞ ¼ 0; ð3:7Þ

k þ
Xm

i¼1

mip2n þ 1:
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Assume csðt0iÞ ¼ ðf1ðt0iÞ;y;fnðt0iÞÞsis for some sisAs2ðt0iÞ; s ¼ 1;y;mi; i ¼
1;y;m: It follows from (3.7) that

Xk

l¼1

llpðtlÞs1ðtlÞ þ
Xm

i¼1

Xmi

s¼1

l0ispðt0iÞsis ¼ 0 8pAP: ð3:8Þ

Set

l0i ¼
Xmi

s¼1

l0is; si ¼
Pmi

s¼1 l0issis

l0i
; i ¼ 1;y;m:

Then, due to the convexity of s2ðt0iÞ; siAs2ðt0iÞ: From (3.8) we have (3.4). The fact

that kX1 follows from

min Reðp0ðt0iÞ � pnðt0iÞÞs2ðt0iÞ40; i ¼ 1;ym;

by Proposition 2.1, where p0 satisfies (2.1). The proof of implication ðiiiÞ ) ðivÞ is
complete.

ðivÞ ) ðiÞ: Suppose that A0 ¼ ft1;y; tkgDMð f � pnÞ; B0 ¼ ft01;y; t0mgD
BðpnÞ; siAs2ðt0iÞ; i ¼ 1;y;m ðm þ 1pk þ mp2n þ 1Þ and positive constants

l1;y; lk; l01;y; l0m such that (3.4) holds. With no loss of generality, assume thatPk
l¼1 ll ¼ 1: For any pAPO; one has by Proposition 2.1 that

Reðpn � pÞðt0iÞsip0; i ¼ 1; 2;y;m;

and it follows that

jj f � pjj2X
Xk

l¼1

ll jð f � pÞðtlÞj2 þ 2Re
Xm

i¼1

l0lðpn � pÞðt0iÞsi

¼
Xk

l¼1

ll jð f � pnÞðtlÞj2 þ
Xk

i¼1

ll jðpn � pÞðt0iÞj
2

X jj f � pnjj2;

where the equality holds because of (3.4). This means that pn is a best approximation
to f from PO and hence (i) holds. The proof of Theorem 3.1 is complete. &

4. Uniqueness and strong uniqueness of the best approximation

In order to establish some results on the uniqueness and strong uniqueness of the
best approximation from PO; we introduce the concept of n-dimensional Haar spaces
of CðQÞ taken from [4].

Definition 4.1. An n-dimensional subspace PCCðQÞ is called a Haar space if every
element pAPWf0g has at most n � 1 zeros in Q:
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In the rest of this section we always assume that P is an n-dimensional Haar space.
As illustrated by the example given in [10], the best approximation to f from PO

may not be unique, in general, even in the case when P is an n-dimensional Haar
space. Hence, in [10], the admissible family of CðQÞ was introduced to discuss the
uniqueness problem.

Definition 4.2 (Smirnov and Smirnov [10]). A function fACðQÞ is called
admissible if

f ðtÞAOt 8tAQ ð4:1Þ

or there exists a best approximation pn to f from PO such that

Mð f � pnÞ-BðpnÞ ¼ |: ð4:2Þ

The set of all admissible functions is denoted by CaðQÞ:

Lemma 4.1. Suppose that fACaðQÞWPO and pnAPO is a best approximation to f

from PO: Let A0 ¼ ft1;y; tkgDMð f � pnÞ; B0 ¼ ft01;y; t0mgDBðpnÞ satisfy (3.4). If

at least one of conditions (4.1) and (4.2) holds, then jA0,B0jXn þ 1:

Proof. Without loss of generality, assume

A0WB0 ¼ ftrþ1;y; tkg; B0WA0 ¼ ft0rþ1;y; t0mg;

A0-B0 ¼ ft1;y; trg ¼ ft01;y; t0rg:

Then, by Proposition 2.1, min Re s1ðtÞ s2ðtÞX0; 8tAA0-B0 if condition (4.1) holds.

In addition, it is trivial that A0-B0 ¼ | if condition (4.2) holds. Suppose on the
contrary that jA0,B0jpn: Then there exists qAP such that

qðtlÞ ¼ s1ðtlÞ 8l ¼ r þ 1;y; k;

qðt0iÞ ¼ si 8i ¼ r þ 1;y;m;

qðtlÞ ¼ qðt0lÞ ¼ s1ðtlÞ þ sl 8l ¼ 1;y; r;

where siAs2ðt0iÞ; i ¼ 1;y;m satisfy (3.4). Obviously,

Xk

l¼1

llqðtlÞs1ðtlÞ þ
Xm

i¼1

l0iqðt0iÞsi

¼
Xr

l¼1

llðjs1ðtlÞj2 þ sls1ðtlÞÞ þ
Xk

l¼rþ1

ll js1ðtlÞj2

þ
Xr

i¼1

l0iðjsij2 þ s1ðtiÞsiÞ þ
Xm

i¼rþ1

l0ijsij2

40;

which contradicts (3.4) and completes the proof. &
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Lemma 4.2. Suppose that fACaðQÞWPO and pnAPO is any best approximation to f

from PO: Then jMð f � pnÞ,BðpnÞjXn þ 1:

Proof. From Lemma 4.1, it suffices to show the conclusion of Lemma 4.2
remains true when condition (4.1) does not hold. In this case, there exists one

best approximation pn
0 to f from PO such that Mð f � pn

0Þ-Bðpn
0Þ ¼ |: Let

%p ¼ ðpn þ pn
0Þ=2: Then %pAPO is also a best approximation to f from PO: Using

standard techniques, we get the inclusions

Mð f � %pÞDMð f � pn

0Þ-Mð f � pnÞ;

Bð %pÞDBðpn

0Þ-BðpnÞ:

This implies that

Mð f � %pÞ-Bð %pÞDMð f � pn

0Þ-Bðpn

0Þ ¼ |;

so that jMð f � %pÞ,Bð %pÞjXn þ 1 due to Lemma 4.1. Consequently, jMð f �
pnÞ,BðpnÞjXn þ 1: The proof is complete. &

Recall that a convex subset J of C is strictly convex if, for any two distinct

elements z1; z2AJ; 1
2
ðz1 þ z2ÞAint J:

Theorem 4.1. Suppose that Ot is strictly convex for each tAQ: Then each fACaðQÞ has

a unique best approximation to f from PO:

Proof. The case when fAPO is trivial. Now let fACaðQÞWPO: Suppose on the

contrary that f has two distinct best approximation p1; p2 from PO: Let pn ¼
ðp1 þ p2Þ=2: Then pn is also a best approximation to f from PO: Set ZðpÞ ¼ ftAQ :
pðtÞ ¼ 0g: We have that

Mð f � pnÞDMð f � p1Þ-Mð f � p2ÞDZðp1 � p2Þ

and

BðpnÞDBðp1Þ-Bðp2Þ:

This implies that BðpnÞDZðp1 � p2Þ by the strict convexity of Ot: Lemma 4.2 implies
that p1 � p2 has at least n þ 1 zeros so that p1 ¼ p2 in view of the definition of a Haar
space. This completes the proof. &

Remark 4.1. The strict convexity of Ot in Theorem 4.1 cannot be dropped as shown
in the following example.

Example 4.1. Let Q ¼ f�1; 0; 1g; p1ðtÞ ¼ 1; p2ðtÞ ¼ t: Let O1 ¼ O�1 ¼ fz :
Re zX1g and O0 ¼ C: Then P ¼ spanfp1; p2g is a Haar subspace. Clearly,

PO ¼ fp ¼ aþ btAP : Re ðaþ bÞX1;Re ða� bÞX1g:
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Now define fACðQÞ by

f ð�1Þ ¼ f ð1Þ ¼ 3
2
; f ð0Þ ¼ 0

and take pn � 1: Then jj f � pnjj ¼ 1 and

Mð f � pnÞ ¼ f0g; BðpnÞ ¼ f�1; 1g:

We will show that pn is a best approximation to f from PO: In fact, 8p ¼ aþ btAPO;
by the definition,

Reðaþ bÞX1; Re ða� bÞX1:

It follows that

Reðaþ bÞ þRe ða� bÞX2;

which implies that Re aX1: Thus,

jj f � pjjXjð f � pÞð0Þj ¼ jajXRe aX1:

This shows that pn is a best approximation to f from PO: Hence f is admissible since

Mð f � pnÞ-BðpnÞ ¼ |
On the other hand, if %p ¼ 1þ i

2
t; it is easy to verify that %pAPO and

jj f � %pjj ¼ jð f � %pÞð0Þj ¼ 1:

This implies that %p is also a best approximation to f from PO: &

Now let us consider the strong uniqueness of the best approximation to f from PO:
We first give the definition of the strong uniqueness of order a40; see, for example,
[7,8].

Definition 4.3. Suppose that fACðQÞ and pnAPO is a best approximation to f from

PO: pn is called strongly unique of order a40 if there exists a constant ca ¼ cað f Þ40
such that

jj f � pjjaXjj f � pnjja þ cajjp � pnjja 8pAPO:

The following lemma extends Theorem 3.3 of [11,12].

Lemma 4.3. Suppose that fACaðQÞWPO and pnAPO is a unique best approximation to

f from PO: Let r40: If, for each tABðpnÞ; there exist a neighborhood UtðpnðtÞÞ of pnðtÞ
and a positive constant gt such that

max Re ðpnðtÞ � zÞ %s2ðtÞp� gtjz � pnðtÞjr 8zAOt-UtðpnðtÞÞ; ð4:3Þ

then pn is strongly unique of order a ¼ maxf2; rg:

Proof. Since pnAPO is a best approximation to f from PO; it follows from Theorem

3.1(iv) that there exist sets A0 ¼ ft1;y; tkgDMð f � pnÞ; B0 ¼
ft01;y; t0mgDBðpnÞ; siAs2ðt0iÞ; i ¼ 1;y;m ðm þ 1pk þ mp2n þ 1Þ and positive

constants l1;y; lk; l01;y; l0m with
Pk

l¼i ll ¼ 1 such that (3.4) holds. From Lemma

4.1 we have that jA0,B0jXn þ 1:
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For any pAP; define

jjpjja ¼
Xk

l¼1

ll jpðtlÞja þ
Xm

i¼1

l0ijpðt0iÞj
a

 !1=a

:

Then jj 	 jja is a norm equivalent to the uniform norm so that there exists a constant

Z40 such that

jjpjjaXZjjpjj 8pAP:

Set

gaðpÞ ¼
jj f � pjja � jj f � pnjja

jjp � pnjja 8pAPO; papn:

Then gaðpÞ has positive lower bounds on POWfpng: In fact, if otherwise, there

exists a sequence fpjgCP such that gaðpjÞ-0: Then jj f � pj jj-jj f � pnjj: With

no loss of generality, we may assume that pj-pn due to the uniqueness of the

best approximation. Write dr ¼ min1pipm gti
40: From (3.4) and (4.3), we

have that

jj f � pj jj2X
Xk

l¼1

ll j f ðtlÞ � pjðtlÞj2 þ 2
Xm

i¼1

l0i Reðpnðt0iÞ � pjðt0iÞÞ %si

þ 2dr

Xm

i¼1

l0ijpnðt0iÞ � pjðt0iÞj
r

¼ jj f � pnjj2 þ
Xk

l¼1

ll jpjðtlÞ � pnðtlÞj2 þ 2dr

Xm

i¼1

l0ijpjðt0iÞ � pnðt0iÞj
r

X jj f � pnjj2 þ
Xk

l¼1

ll jpjðtlÞ � pnðtlÞja þ 2dr

Xm

i¼1

l0ijpjðt0iÞ � pnðt0iÞj
a

X jj f � pnjj2 þminf1; 2drgjjpj � pnjjaa
X jj f � pnjj2 þminf1; 2drgZajjpj � pnjja

for all j large enough. Observe that

jj f � pj jja � jj f � pnjjaXða=2Þjj f � pnjja�2ðjj f � pjjj2 � jj f � pnjj2Þ:

It follows that gaðpjÞXminf1; 2drgða=2Þjj f � pnjja�2Za40; which contradicts that

gaðpjÞ-0: The proof is complete. &

The following result is a generalization of Theorem 5.2 in [10].

Theorem 4.2. Suppose that @Ot has a positive curvature at zn for any tAQ; znA@Ot:
Then each fACaðQÞ has a strongly unique best approximation of order 2 from PO:
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Proof. The case when fAPO is trivial so that we assume that fePO: Note that each
Ot is strictly convex under the assumption of Theorem 4.2. By Theorem 4.1, the best

approximation pn to f from PO is unique. By Lemma 4.3, it is sufficient to show that,

for each tABðpnÞ; there exist a neighborhood UtðpnðtÞÞ of pnðtÞ and a positive
constant gt40 such that (4.3) holds for r ¼ 2:

For each tABðpnÞ; let kt40 and uðtÞ denote the curvature and center of curvature

at pnðtÞ; respectively. Define

cðtÞ ¼ 2uðtÞ � pnðtÞ; rðtÞ ¼ 2juðtÞ � pnðtÞj ¼ 2=kt 8tABðpnÞ:

Then, for each tABðpnÞ; there exists a neighborhood UtðpnðtÞÞ of pnðtÞ such that

jz � cðtÞjrrðtÞ for all zAOt-UtðpnðtÞÞ: ð4:4Þ

From (4.4), we obtain that

Re ðpnðtÞ � zÞðcðtÞ � pnðtÞÞp� 1
2
jz � pnðtÞj2;

zAOt-UtðpnðtÞÞ; tABðpnÞ: ð4:5Þ

Observe that, for any tABðpnÞ and sAs2ðtÞ; s ¼ dtðcðtÞ � pnðtÞÞ for some dt40: This
with (4.5) implies that

max Re ðpnðtÞ � zÞ %s2ðtÞ ¼ dtRe ðpnðtÞ � zÞcðtÞ � pnðtÞ

p � dt

2
jz � pnðtÞj2

for any zAOt-UtðpnðtÞÞ; tABðpnÞ: This completes the proof. &

In order to give the more general strong uniqueness theorems, we introduce the
notation of uniformly convex function and some useful properties, see, for example,
[16].

Definition 4.4. A function F : C-R is uniformly convex at znAC if there exists
d : Rþ-Rþ with dðxÞ40 for x40 such that

Fðlzn þ ð1� lÞzÞplFðznÞ þ ð1� lÞFðzÞ � lð1� lÞdðjzn � zjÞ

8zAC; 0olo1:

Note that the set fzAC : FðzÞp0g is strictly convex if F is uniformly convex at

each znAC with FðznÞ ¼ 0: Define the modulus of convexity of F at zn as follows:

mznðxÞ ¼ inf
lFðznÞ þ ð1� lÞFðzÞ � Fðlzn þ ð1� lÞzÞ

lð1� lÞ :

�
zAC; jzn � zj ¼ x; 0olo1g:

Clearly, F is uniformly convex at zn if and only if mznðxÞ40 for all x40:
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Definition 4.5. A function F : C-R has the modulus of convexity of order r40 at

znAC if there exists dr40 such that mznðxÞ4drx
r for x40:

Proposition 4.1. A function F : C-R has the modulus of convexity of order r40 at

znAC if and only if there exists d40 such that

FðzÞXFðznÞ þReðz � znÞ %u þ djz � znjr 8zAC; uA@FðznÞ: ð4:6Þ

Theorem 4.3. Let r40: Suppose that, for any tAQ; znA@Ot; Fð	 ; tÞ has the modulus

of convexity of order r at zn: Then each fACaðQÞ has a strongly unique best

approximation of order a ¼ maxfr; 2g to f from PO:

Proof. Since for any tAQ; znA@Ot; Fð	 ; tÞ is uniformly convex at zn; it follows that

each Ot is strictly convex. Thus, by Theorem 4.1, the best approximation pn to f from

PO is unique. By the assumption, for each tABðpnÞ; there exists Zt40 such that (4.6)
holds for d ¼ dt: This implies that (4.3) holds. Thus the result follows from Lemma
4.3. The proof is complete. &

Remark 4.2. In the case when F has the continuous second derivatives, we can show

that the fact that, for each tAQ; @Ot has a positive curvature at each znA@Ot implies

that Fð	 ; tÞ has the modulus of convexity of order 2 at zn for any tAQ; znA@Ot:
Hence, in this case, Theorem 4.2 is a direct corollary of Theorem 4.3.

Remark 4.3. When Ot is the closed disk in C; the assumptions of Theorems 4.2 and
4.3 hold. Hence they extend the strong uniqueness theorem in [10].
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