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Abstract

We investigate the problem of best restricted range approximation of complex-valued
continuous functions for a very general system of restrictions. Our results, including the
characterizations, uniqueness and strong uniqueness, extend all recent results due to Smirnovs.
© 2002 Elsevier Science (USA). All rights reserved.

1. Introduction

Let C(Q) denote the Banach space of all complex-valued continuous functions on
a compact Hausdorff space Q endowed with the uniform norm

/1= max |70 W eC(Q).

In the spirit of the best restricted range approximation in a real-valued continuous
function space, see for example [2,5,14,15] and the relevant references therein,
Smirnov and Smirnov [9,10] presented and formulated the problem of best restricted
range approximations in a complex-valued continuous function space. The setting is
as follows. Let P be a finite-dimensional subspace of C(Q) and Q = {Q,: te Q} be a
system of nonempty convex closed sets in the complex plane C. Set

Po={peP: p(t)eQ, for all teQ}.

The problem considered here is to find an element p* e Pg, which is called a best
(restricted range) approximation to /€ C(Q) from Py, such that

* .
Lf = p¥[l = inf ||/ —pl|.
pePo
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As pointed out in [10], this problem for a general class of restrictions is quite difficult.
Therefore, in [9,10], 2 was assumed to be the system of the closed disks with the
center u(¢) and radius r(¢) >0 for each e Q, that is,

Q, ={zeC: |z—u(t)|<r(t)} VteQ,

where u, re C(Q). Under this assumption, the authors gave the results on existence,
characterization, uniqueness and strong uniqueness of the best restricted range
approximation. Recently, these results have been extended by Smirnovs [11-13] to a
general restriction system Q for which every ; is a closed, strictly convex set with
nonempty interior and ‘“‘smooth” boundary, and, in addition, €, is continuous
relative to 7€ Q under the Hausdorff metric of sets.

In the present paper, we consider the same problem for a more general class of
restrictions. More precisely, for any re Q, Q, is only assumed to have nonempty
interior. Of course, it is natural to require that £, have some continuity relative to
te Q. Note that any closed convex subset can be expressed as a level set of a convex
function. In fact, for any e Q, there exists a real convex function F(-,7) on C such
that

0Q,={zeC: F(z,t) =0} VteQ, (1.1)

intQ, = {zeC: F(z,/)<0} VieQ, (1.2)

where 0Q, and int Q; denote the boundary and interior of Q,, respectively. Thus, we
assume that the required continuity for Q to satisfy is that the function F(-,-)
continues on the product space C x Q. In this case, we establish some results on
characterization, uniqueness and strong uniqueness, similar to but more general than
the ones due to Smirnovs [9-13].

It should be remarked that our system of restrictions in the present
paper, compared with Smirnovs’ systems in [11-13], is much more general since,
for each te Q, the closed convex set , only needs to have nonempty interior, which,
in fact, can be unbounded. In addition, for a system Q satisfying Hypothesis 2.1, if
the set-valued mapping ¢+ Q, is continuous under the Hausdorff metric, we can
verify that there exist continuous functions F(-,-) on C x Q, which is convex with
respect to the first variable, such that (1.1) and (1.2) hold. But the converse is
obviously not true.

2. Preliminaries
In the paper, we assume that @ contains at least n+ 1 points and that

{¢1, b5, ...,¢,} =P is a base of P, that is, any element pe P has a unique expression
of the form

P = Z Ci(rbia
i=1

where ¢;eC, i=1,2,...,n.
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As in [10-12], we need a basic hypothesis and some notations.
Hypothesis 2.1. Assume that there exists pye P such that
po()eintQ, VteQ. (2.1)
For f'e C(Q), A<= Q, following [10], we define

Pyo={peP: p(t)eQ,Vte A},

E4(f,Ppq) =inf{|[f —pll;: pePpa},

where || f]|, = sup{|f(¢)| : teA}. In particular, we set, for short, E4(f, Pgo) =
E4(f) when A = B and E4(f,Ppq) = E(f) when 4 = B= Q.
In general, we have E4(f)<Ep(f)<E(f)if A=B<=Q.

Definition 2.1 (Smirnov and Smirnov [10]). An element p*e P, is called a best
(restricted range) approximation to f on A4 from P, g if

1S = P14 = Ea(f)-

In particular, a best (restricted range) approximation to f on Q from Pg is called a
best (restricted range) approximation to f from Py, for short.

Definition 2.2. A subset 4 < Q is called an admissible subset for f with respect to Py,
if E4(f) = E(f).

Remark 2.1. If 4 is an admissible subset for f* with respect to Pg, then any subset of
Q containing A4 is also an admissible subset for f* with respect to Pg.

Remark 2.2. Recall that (4,B) with A=Q, B=Q is called an admissible pair
for f with respect to Pq if E4(f,Pgpo)=E(f), see, e.g., [10]. Clearly, if 4
is an admissible subset for f with respect to Pg, then the pair (4,4) is an
admissible pair for f with respect to Pg. Conversely, if the pair (4,B) is an
admissible pair for f with respect to Pg, then the set A U B is an admissible subset for
f with respect to Pg.

Remark 2.3. With almost the same arguments as the proof of Theorem 3.2 in [10],
we can show that, for any f € C(Q), there exists at least one admissible subset 4 for f
with respect to P such that the cardinality |4|<2n+ 1.

Finally, we need the concepts of the subdifferential and directional derivative of a
real function.



74 C. Li | Journal of Approximation Theory 120 (2003) 71-84

Definition 2.3 (Rockafellar [6]). Let F be a convex function defined on C and
z, ueC. The subdifferential of F at z, denoted by 0F(z), is defined by

OF(z) ={ueC: F(v)=F(z) + Re(v — z)a VveC},

while the directional derivative of F at z with respect to u, denoted by F'(z)(u), is
defined by

F'(z)(u) = tl—i>T0 w

As is well-known [6], if F is convex then OF (z) is a nonempty closed convex set in
C and

F'(z)(u) = max Re OF (z)u.

The following proposition, which is a direct consequence of the definitions, is
useful in the rest.

Proposition 2.1. Let z*e€C satisfy that F(z*) =0 and zeC. If F(z)<0(<0), then

F'(z%)(z — z*) = max Re OF (z*)(z — z*) <0(<0). (2.2)

3. Characterization of the best approximation

Let fe C(Q), p*ePq. Following [9,10], we define
M(f)=A{teQ: |/ =Ilf1I}, BW*) ={teQ: p*(1)e0Q}
and
o1(0) = 1) = p*(1) Ve,
From the continuity, it follows that M (f) and B(p*) are compact. Furthermore, we
define a set-valued mapping o,(¢) by
0(1) = —OF (p*(1),1) VieQ,

where OF (p*(1), t) denotes the subdifferential of the function F(-,¢) at p*(z).
The following proposition is the well-known Kolmogorov-type characterization of
the best approximation from a convex subset of C(Q), see, for example [1].

Proposition 3.1. Let A be a nonempty closed subset of Q and G a closed non-empty
convex subset of C(A). Let f € C(A), p*eG. Then p* is a best approximation to f from
G if and only if

max  Re(p* —p)(0)o1(t)=0 Vpeg, (3.1)
1eMa(f—p*)

where

My(f =p*) ={ted: |f(O) =p* Ol =11/ = p¥|l}-
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Let

U = {b(1) = (¢, (1), ..., (1)1 (1): teM(f—p*)}U< U C(l)), (3.2)
where

c(t) = (¢1 (1), ... d,(1)o2(t)  VieB(p™).

Then the main theorem of this section can be stated as follows.
Theorem 3.1. Let feC(Q), p*ePg. Then the following four statements are
equivalent:

(i) p* is a best restricted range approximation to f from Pg;
(i1) for VpeP,

Re p(t t R 1) =0
max{,eal}}?}",,*) ep(t)oi(t), max  max ep(f)o ()}

VpeP, (3.3)
where p(t)aa(1) means {p(1)é : cea(1)};

(iii) the origin of the space C" belongs to the convex hull of the set U;
(iv) there exist sets Ao ={t1,...u}sM(f—-p*), Bo={1,...,t,} =B(p¥),

giear(t)), i=1, (m+1<k+m<2n+1) and positive constants
Ay eees iy Ay een,s }vm such that the following condition holds:
Z/llp t)o) tl Z)lp Jo; =0 VpeP. (3.4)

Proof. (i) = (ii): It is sufficient to prove (ii) for f'e C(Q)\\ Pq. Suppose that p* is a
best approximation to f from Pg but condition (3.3) does not hold for some ¢e P.
Let A< Q be an admissible set for f* with respect to Po with |A]|<2n + 1. Then p* is a
best restricted range approximation to f on A from Pg and || f — p*||, = ||/ — p*||-
In addition, M4(f — p*) = AnM(f — p*). Set

B4(p*) = {te A: p*(1)e0Q,} = AnB(p™).
Thus

Req(t)a(1)<0 Ve M (f —p*), (3.5)

max Re q(1)a2(1) <0 Vee B4(p*). (3.6)
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Write g, = p* — Aq. It follows from (2.2) and (3.6) that

tim 20200 ZFE0.0
g A

for all 1€ B4(p*) so that, for each 1€ B4(p*), there is 4, >0 such that ¢, (¢) eint Q, for
all 0<A</,. Taking into account that p*(¢)eint Q, for all e AN\ B4(p*), we also
have that, for each re AN\ B4(p*), there is /,>0 such that ¢,(z)eintQ, for all
0<A<A;. Set A9 =minsey 4, Then 49p>0 and g,ePyqo for all 0<i<<y. Let
G ={q,;: 0<A<4}. By Proposition 3.1, it follows from (3.5) that p* is not
a best approximation to f from G. This implies that there is 0 <1<y such that
L/ = a;lla<Ilf = p*ll4 = E(f) so that
EA(f)<IS = ailla<Ilf = P¥ll4 = E(S)

This contradicts that A4 is an admissible set for f* with respect to Po. Hence (ii) holds.

(ii) = (iii): Suppose that (ii) holds. By the Linear Inequalities Theorem in [3], it
suffices to show that % is compact in C". For the end, let {1} be any sequence in %.
With no loss of generality, assume that wux = (¢,(t),...,¢,(tk))or with
tre B(p*), oreay(t;) and 1 — 1o € B(p*). Note that

max Re OF (z, Yu< F(z + u,t) — F(z,1).

It follows that F (p*(¢), ¢) is uniformly bounded on Q so that {o,} is bounded. Thus,
we may assume that o, — 0. From the definition of the subdifferential it follows that

F(Z, lk)BF(p*(l‘k),lk) — Re (Z—p*(lk))o’_k VzeC.
Taking the limit as k— oo, we have
F(Z, lo)}F(p*(Io),lo) —Re(Z—p*(to))G_() VzeC.

This implies that o€ 0a,(#) so that {u;} contains a subsequence which converge to
an element in %. This completes the proof of the compactness of the set % and so (iii)
holds.

(iii) = (iv): Suppose that the origin of the space C" belongs to the convex hull of
the set %. Then in view of Caratheodory’s theorem in [3] one can find
Ay =A{t, ....tx,}SM(f —p*), Bo={t),....,t,,} S B(p*), c(t))ec(t), s=1,...,my;
i=1,...,m and positive constants A, ..., %, Ay, s=1,...,m;, i=1,...,m such
that

m m;

k i
DT> Y =1,
=1 i=1 s=1

mi

k m
S abu)+> 0> dedi) =0, (3.7)
=1 =l s=1

k + m;<2n+ 1.

m

i=1
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Assume  ¢(2) = (¢1(£), ..., 0, (£))ais  for some ayear(t), s=1,....m; i=
1, ...,m. It follows from (3. 7) that

k
> p(t)er
[

m;

)+ Z Z Xp(t)as =0 YpeP. (3.8)

Set

m; Zm, i/ Tl .
E Moy oy ==L R = m.
A

Then, due to the convexity of 0,(), o;€02(#;). From (3.8) we have (3.4). The fact
that k>1 follows from

min Re(po(7}) — p*(#))o2(£) >0, i=1,...m,

by Proposition 2.1, where py satisfies (2.1). The proof of implication (iii) = (iv) is
complete.

(iv) = (i): Suppose that Ay={t1,...,5x}=SM(f —p*), Bo={t},....1,} =
B(p*), oieox(t)), i=1, (m+1<k+m<2n+1) and positive constants
My wees ey Ay euns o such that (3.4) holds. With no loss of generality, assume that

Z;‘Zl A = 1. For any pe Pg, one has by Proposition 2.1 that
Re(p* — p)(£)7i<0, i=1,2,....m
and it follows that

m

1S = plP> Z Ml(f = p)@)]* +2Re Z 4(p* = p)(1)5i

M»

I|(f = p* lz|+zi|(1?*—p()\
||f Tl

where the equality holds because of (3.4). This means that p* is a best approximation
to f from Pg and hence (i) holds. The proof of Theorem 3.1 is complete. [

4. Uniqueness and strong uniqueness of the best approximation

In order to establish some results on the uniqueness and strong uniqueness of the
best approximation from Pg, we introduce the concept of n-dimensional Haar spaces
of C(Q) taken from [4].

Definition 4.1. An n-dimensional subspace P< C(Q) is called a Haar space if every
element pe P\ {0} has at most n — 1 zeros in Q.
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In the rest of this section we always assume that P is an n-dimensional Haar space.

As illustrated by the example given in [10], the best approximation to f from Pg
may not be unique, in general, even in the case when P is an n-dimensional Haar
space. Hence, in [10], the admissible family of C(Q) was introduced to discuss the
uniqueness problem.

Definition 4.2 (Smirnov and Smirnov [10]). A function feC(Q) is called
admissible if

f(1)eQ, VieQ (4.1)
or there exists a best approximation p* to f from Pg such that
M(f = p*)nB(p*) = 0. (4.2)

The set of all admissible functions is denoted by C,(Q).

Lemma 4.1. Suppose that f e Cy(Q)\Pq and p*e Pq is a best approximation to f
from Pq. Let Ay = {t, ..., ts, S M(f —p*), By ={t},....1,,} = B(p*) satisfy (3.4). If
at least one of conditions (4.1) and (4.2) holds, then |4y By|=n + 1.

Proof. Without loss of generality, assume
AO\BO - {[rJrlv ceey tk}a BO\AO {lr+1a [EX) [:n}v

AoynBy={t1,....t,} = {1}, ..., L.}.

Then, by Proposition 2.1, min Re g, (¢) 02(¢) =0, Ve Ay n By if condition (4.1) holds.
In addition, it is trivial that 49N By = @ if condition (4.2) holds. Suppose on the
contrary that |4y By| <n. Then there exists g€ P such that

q() =o1(t)) Vi=r+1,..k,
q(t)) =0; Yi=r+1,....m

gty =q(t) =a1(t)) +a, VI=1,...,r,
where Uieo'z(l‘,») i=1,...,m satisfy (3.4). Obviously,

Zizq (t1)ar (1) +Z Aiq(t;

r

= > o1 (@) + o101 (1)) Z e (1)
=1 I=r+1
m

Z (loil” + o1(t)a) + Y Ailoil

i=1 i=r+1
>0,

which contradicts (3.4) and completes the proof. [l
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Lemma 4.2. Suppose that f'e Co(Q)\ Pgo and p* e Pq is any best approximation to f
from Pq. Then |[M(f — p*)uB(p*)|=n+ 1.

Proof. From Lemma 4.1, it suffices to show the conclusion of Lemma 4.2
remains true when condition (4.1) does not hold. In this case, there exists one
best approximation p§ to f from Po such that M(f — p¥)nB(ps) =0. Let
p=(p*+p§)/2. Then pePq is also a best approximation to f from Pq. Using
standard techniques, we get the inclusions

M(f —=p)sM(f —py)aM(f —p¥),

B(p)<=B(py) N B(p™).
This implies that

M(f = p)nB(p)=M(f - p5) N B(p;) =0,
so that |M(f —p)uB(p)|=n+1 due to Lemma 4.1. Consequently, |M(f —
p*)UB(P*)|=n+ 1. The proof is complete. [

Recall that a convex subset J of C is strictly convex if, for any two distinct
elements zj,z,€J, 3(z) + z,) eint J.

Theorem 4.1. Suppose that Q, is strictly convex for each te Q. Then each f € C,(Q) has
a unique best approximation to f from Pg.

Proof. The case when fePg is trivial. Now let fe C,(Q)\ Pqo. Suppose on the
contrary that f has two distinct best approximation p;, p, from Pq. Let p* =
(p1 + p2)/2. Then p* is also a best approximation to f from Pg. Set Z(p) = {t€Q:
p(t) = 0}. We have that

M(f—p*)sM(f —p))oM(f —p2)SZ(p1 —p2)
and
B(p*) = B(p1) 0 B(p>).

This implies that B(p*) = Z(p; — p2) by the strict convexity of Q,. Lemma 4.2 implies
that p; — p, has at least n + 1 zeros so that p; = p; in view of the definition of a Haar
space. This completes the proof. [

Remark 4.1. The strict convexity of €, in Theorem 4.1 cannot be dropped as shown
in the following example.

Example 4.1. Let Q= {-1,0,1}, pi(t)=1, p2(t) =t. Let Q=Q_;={z:
Rez>1} and Q) = C. Then P = span{p;,p,} is a Haar subspace. Clearly,

Po={p=a+pteP: Re(a+p)=1,Re(a—f)=1}.
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Now define f'e C(Q) by
f=D)=f1)=3 f(0)=0

and take p* = 1. Then || f — p*|| = 1 and
M(f —p*)={0}, B(p*)={-11}

We will show that p* is a best approximation to f from Pg. In fact, Vp = o + 1€ Pg,
by the definition,

Re(o+ f)=1, Re(ax—f)=1.
It follows that
Re(x + f) + Re (« - f) 22,
which implies that Re 2>1. Thus,
LS =plIZI(f = p)(0)] = [e|>Rea>1.
This shows that p* is a best approximation to f/ from Pg. Hence f is admissible since
M(f - p*) " B(p*) = 0 |
On the other hand, if p = 1+ 51, it is easy to verify that pe Po and
Lf =pll =1/ =p)(O0)] = 1.

This implies that p is also a best approximation to f from Pg. O

Now let us consider the strong uniqueness of the best approximation to f from Pg.
We first give the definition of the strong uniqueness of order o> 0, see, for example,
[7.8].

Definition 4.3. Suppose that f e C(Q) and p* € Pq is a best approximation to f from
Pq. p* is called strongly unique of order >0 if there exists a constant ¢, = ¢,(f) >0
such that

1/ =pI"ZI1f =PI+ callp = p¥II* VpePa.

The following lemma extends Theorem 3.3 of [11,12].

Lemma 4.3. Suppose that f € C,(Q)\ Pq and p* € Pq, is a unique best approximation to
f from Pg. Let r>0. If, for each te B(p*), there exist a neighborhood U,(p*(t)) of p*(¢)
and a positive constant v, such that

max Re (p*(1) — 2)62(0) < — y,|z = p*(1)|" VzeQ,n U,(p*(1)), (4.3)

then p* is strongly unique of order o = max{2,r}.

Proof. Since p* e Pg is a best approximation to f from Py, it follows from Theorem
3.1(iv) that there exist sets Ao ={t1,....,tx, J=M(f —p*), By =
{t},....,t,} = B(p*), gico(t ), i=1,....m (m+1<k+m<2n+1) and positive
constants Ay, ..., A, Ay, ..., A, with Z }vl = 1 such that (3.4) holds. From Lemma
4.1 we have that |4dgu By|=n+ 1.



C. Li | Journal of Approximation Theory 120 (2003) 71-84 81

For any pe P, define

k m 1/a
Ipll, = (Z Jlp(a)* + iﬁlP(ﬁ)“) :
=1 i=1

Then || - ||, is a norm equivalent to the uniform norm so that there exists a constant
n>0 such that

llpll,=nllpll  VpeP.
Set

1/ =pll* = 1If = r*II"

7.(P) =
* llp — p*|I*

VpePq, p#p*.

Then y,(p) has positive lower bounds on Po\ {p*}. In fact, if otherwise, there
exists a sequence {p;} =P such that y,(p;)—0. Then ||f —p;||—||f — p*||. With
no loss of generality, we may assume that p;—p* due to the uniqueness of the
best approximation. Write d, = minj<;<»y,>0. From (3.4) and (4.3), we
have that

k m
=

1f = pAlP= Yl f () = pi(an)]* +2 Z i Re(p*(1;) — p;(1)))6
1

+ 24, 3 2P — ()
i=1

k m
=1/ =P IP+ D Alpi(u) = p*(e) P +2d, Y Jilpi(t) — p*()]
=1 i=1
5 k m
>/ =P+ D Alpi(u) = p* )" +2d. Y Jlpi(6) — pH(E)I”
I=1

=1
> ||/ = p*|P + min{1,2d }]1p; - p*|I;
> || = p*IP + min{1, 24}’ lp; — p*|I"
for all j large enough. Observe that
1 =pill* = 1f = P*1*= /2 f = P2 = 2P = 11 = P*IP).

It follows that y“(pj)Zmin{l,Zdr}(oc/Z)Hf—p*||°‘_2n“>0, which contradicts that
7,(pj) = 0. The proof is complete. [J

The following result is a generalization of Theorem 5.2 in [10].

Theorem 4.2. Suppose that 9Q, has a positive curvature at z* for any te Q, z*€dQ,.
Then each f € Cy(Q) has a strongly unique best approximation of order 2 from Pg.
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Proof. The case when f € Py, is trivial so that we assume that f'¢ Po. Note that each
Q, is strictly convex under the assumption of Theorem 4.2. By Theorem 4.1, the best
approximation p* to f from Pg is unique. By Lemma 4.3, it is sufficient to show that,
for each reB(p*), there exist a neighborhood U,(p*(¢)) of p*(¢) and a positive
constant y,>0 such that (4.3) holds for r = 2.

For each re B(p*), let k,>0 and u(f) denote the curvature and center of curvature
at p*(t), respectively. Define

c(t) = 2u(t) = p*(1),  r(t) = 2fu(t) = p*()| = 2/x, V1€ B(p*).
Then, for each re B(p*), there exists a neighborhood U,(p*(1)) of p*(z) such that
|z —c(0)|<r(z) for all zeQ,n U, (p*(1)). (4.4)
From (4.4), we obtain that
Re (p*(1) - 2)(e(t) — P < — |z — (1),
zeQ,nU,(p*(1)), teB(p*). (4.5)

Observe that, for any te B(p*) and o€ 0,(¢), 0 = d,(c(t) — p*(¢)) for some d, > 0. This
with (4.5) implies that

max Re (p*(1) — z)62(t) =d,Re (p*(t) — 2)c(1) — p*(2)
< —4lz-p* )P
for any ze Q,n U,(p*(¢)); teB(p*). This completes the proof. O

In order to give the more general strong uniqueness theorems, we introduce the
notation of uniformly convex function and some useful properties, see, for example,
[16].

Definition 4.4. A function F : C— R is uniformly convex at z*eC if there exists
0 : Ry > R, with 6(x)>0 for x>0 such that
FOZ*+ (1 = A)z2)<AF(Z*) + (1 = A)F(2) — 2(1 = 2)8(|]z* — z)

VzeC, 0<i<l.

Note that the set {zeC : F(z)<0} is strictly convex if F is uniformly convex at
each z*eC with F(z*) = 0. Define the modulus of convexity of F at z* as follows:

() = inf{” () + (1~ i)f(f)_—; (2 4+ (1= 2)7)
zeC, |2* —z| =x, 0<i<l}.

Clearly, F is uniformly convex at z* if and only if u..(x)>0 for all x> 0.
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Definition 4.5. A function F : C— R has the modulus of convexity of order r>0 at
z*eC if there exists d, >0 such that u.(x)>d,x" for x>0.

Proposition 4.1. A4 function F : C— R has the modulus of convexity of order r>0 at
z¥eC if and only if there exists d >0 such that

F(z)>F(z*) + Re(z — ) + d|z — z*|" VzeC, uedF(z*). (4.6)

Theorem 4.3. Let r>0. Suppose that, for any t€ Q, z*€0Q,, F(-,t) has the modulus
of convexity of order r at z*. Then each feC,(Q) has a strongly unique best
approximation of order oo = max{r,2} to f from Pq.

Proof. Since for any te Q, z¥€dQ;, F(-,t) is uniformly convex at z*, it follows that
each Q, is strictly convex. Thus, by Theorem 4.1, the best approximation p* to f from
Pg is unique. By the assumption, for each 1€ B(p*), there exists 1, >0 such that (4.6)
holds for d = d,. This implies that (4.3) holds. Thus the result follows from Lemma
4.3. The proof is complete. [

Remark 4.2. In the case when F has the continuous second derivatives, we can show
that the fact that, for each e Q, 9Q, has a positive curvature at each z* e 9Q, implies
that F(-,¢) has the modulus of convexity of order 2 at z* for any 1€ Q, z*€0Q,.
Hence, in this case, Theorem 4.2 is a direct corollary of Theorem 4.3.

Remark 4.3. When Q;, is the closed disk in C, the assumptions of Theorems 4.2 and
4.3 hold. Hence they extend the strong uniqueness theorem in [10].
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